
 
 

 

Supplementary Figure 1 

Optimization of Patch-seq protocol. 

Pilot experiments were carried out to test the effect of various protocol modifications on cDNA yield, including addition of RNase 
inhibitor to the intracellular solution (a), silanization of glass capillaries (b), concentration of dNTPs in lysis buffer (c), extraction of 
cytoplasm only v. cytoplasm and nucleus (d), pipette tip size (e) (tip size inversely proportional to resistance, line represents linear 
regression), and volume of intracellular solution in patch pipette (f) (20 μl total reaction volume, RT-PCR performed on whole brain 
cDNA template). 
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Supplementary Figure 2 

Modified RNase-free intracellular solution does not affect health of patch-clamp-recorded neurons. 

Membrane potential of neurons patched with RNase-free modified intracellular solution for Patch-seq recordings. Data represent mean 
± SE (n=3 neurons). 
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Supplementary Figure 3 

Quality control of cDNA libraries. 

(a) Average size and concentration (from 300-9,000 bp) of all collected samples. Only samples with more than 200 pg/μl and an 
average size greater than 1,500 bp were sequenced (criteria denoted by dashed lines). Libraries generated from patched cells 
generally contained more (b) and higher quality, full-length (c) cDNA compared to negative controls in which no cell was patched.  
Distributions of concentrations (d) and average sizes (e) of cDNA libraries generated from ex vivo patched cells. Dashed lines in (b-e) 
indicate threshold criteria used for sequencing. (f) Pearson correlation between concentration of cDNA and number of genes detected 
for all sequenced ex vivo cells. 
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Supplementary Figure 4 

Mapping statistics of Patch-seq and standard Smart-seq2 libraries. 

(a) Percentage of sequenced reads that aligned uniquely to the respective assembly for patched single neurons and dissociated 
HEK293T cells picked and sequenced according to standard Smart-seq2 protocol (Picelli et al. 2013). (b) Percentage of uniquely 
aligned reads that overlap annotated RefSeq exons, introns or between gene annotations. This comparison indicates that the libraries 
generated from patched single neurons have similar qualities as standard Smart-seq2 libraries generated from lysed whole cells. 

Nature Biotechnology: doi:10.1038/nbt.3445



 
 

 

Supplementary Figure 5 

Dimension reductions and marker expression in interneurons, pyramidal neurons and astrocyte. 

(a) Principal component analyses (PCA) of the expression profiles of 16,000 genes detected in any of the patched cells. Each cell was 
projected onto a two-dimensional space drawn by the first two principal components. (b) Two-dimensional representation of cells using 
t-SNE on the PCA space, as in (a) but considering the first 28 principal components. Note that single outlier cells cannot be well 
captured in t-SNE representations as a consequence of the neighborhood analyses of the closest 20 cells (perplexity parameter). 
Therefore, the distinct gene expression observed in the astrocyte in the PCA (a) is not well captured in the t-SNE map. (c) Boxplots that 
show marker gene expression for interneurons, pyramidal neurons and the astrocyte. The mean and median are represented by the 
circle and black line, respectively. The edges of the box represent the 25th and 75th percentiles. Outlier cells are marked with grey 
dots, and the whiskers extend to extreme data points not considered outliers. 
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Supplementary Figure 6 

Marker gene expression overlaid onto t-SNE map. 

Marker gene expression overlaid onto the two-dimensional t-SNE representation (from Fig. 2d,e). Colors according to log2- transformed 
gene expression values. 
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Supplementary Figure 7 

Clustering of random samples of L1 interneurons.  

Investigating the smallest number of patched cells needed to identify the two L1 interneuron cell types with unbiased clustering of gene 
expression profiles. (a) Affinity propagation was used to cluster random subsets of L1 interneurons (ex vivo cells, n=46) at decreasing 
numbers of cells. After each subsampling and clustering, the cell assignments were compared to the assignment based on all cells (Fig. 
2d) and the accuracy score calculated (i.e. the number of correctly assigned cells over all subsampled cells). Accuracy scores from the 
250 iterations per step are shown as standard boxplots, with median and mean as a line and circle, respectively. Importantly, even with 
random samples of 31 cells we robustly captured the two cell types (median accuracy=90%). Sampling fewer cells, in particular below 
26 cells, often failed to distinguish the two cell types in an unbiased manner. (b) Showing the percentage of iterations where the affinity 
propagation clustering resulted in one, or two or three clusters, with the subsampling of decreasing numbers of L1 interneurons. The 
decline in performance at lower cell numbers was mainly caused by an inability of the affinity propagation algorithm to find two clusters, 
and instead reporting only one cluster. 
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Supplementary Figure 8 

Expression differences in interneurons patch-clamp-recorded ex vivo and in vivo. 

(a) Coloring the t-SNE map (from Fig. 2d,e) according to ex vivo and in vivo patched neurons. (b) Heat map showing the top 17 genes 
that separate ex vivo and in vivo cells The genes were identified using SCDE and all have absolute values of Z-score above 1.96 
(genes with asterisk have corrected absolute Z-score above 1.96). The heat map shows an increased expression of genes ex vivo 
relating to stress induction (including Fos, Fosb, Junb) and other genes with differential expression. 
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Supplementary Figure 9 

Overlaying electrophysiological properties of cells onto the two-dimensional t-SNE map. 

Coloring of cells in the t-SNE space according to their electrophysiological properties. (a) Identical to Fig. 2e, showing cell type 
assignments onto the t-SNE map, included to ease the comparison to panels b-l. (b-j) Cells colored according to continuous 
electrophysiological features, scaled by the highest and lowest measurement onto the indicated colorbar. (k-l) Cells colored based on 
their displayed spiking patterns during recordings. Grey squares show in vivo patched cells. 
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